Existence of viable solutions for nonconvex differential inclusions
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We show the existence result of viable solutions to the differential inclusion $$\displaylines{ \dot x(t)\in G(x(t))+F(t,x(t)) \cr x(t)\in S \quad \hbox{on } [0,T], }$$ where $F: [0,T]\times H\to H(T>0)$ is a continuous set-valued mapping, $G:H\to H$ is a Hausdorff upper semi-continuous set-valued mapping such that $G(x)\subset \partial g(x)$, where $g :H\to \mathbb{R}$ is a regular and locally Lipschitz function and $S$ is a ball, compact subset in a separable Hilbert space $H$.
Classification : 34A60, 34G25, 49J52, 49J53
Keywords: uniformly regular functions, normal cone, nonconvex differential inclusions
@article{EJDE_2005__2005__a271,
     author = {Bounkhel, Messaoud and Haddad, Tahar},
     title = {Existence of viable solutions for nonconvex differential inclusions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a271/}
}
TY  - JOUR
AU  - Bounkhel, Messaoud
AU  - Haddad, Tahar
TI  - Existence of viable solutions for nonconvex differential inclusions
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a271/
LA  - en
ID  - EJDE_2005__2005__a271
ER  - 
%0 Journal Article
%A Bounkhel, Messaoud
%A Haddad, Tahar
%T Existence of viable solutions for nonconvex differential inclusions
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a271/
%G en
%F EJDE_2005__2005__a271
Bounkhel, Messaoud; Haddad, Tahar. Existence of viable solutions for nonconvex differential inclusions. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a271/