Asymptotic shape of solutions to nonlinear eigenvalue problems
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the nonlinear eigenvalue problem $$ -u''(t) = f(\lambda, u(t)), \quad u \mbox{greater than} 0, \quad u(0) = u(1) = 0, $$ where $\lambda > 0$ is a parameter. It is known that under some conditions on $f(\lambda, u)$, the shape of the solutions associated with $\lambda$ is almost `box' when $\lambda \gg 1$. The purpose of this paper is to study precisely the asymptotic shape of the solutions as $\lambda \to \infty$ from a standpoint of $L^1$-framework. To do this, we establish the asymptotic formulas for $L^1$-norm of the solutions as $\lambda \to \infty$.
Classification : 34B15
Keywords: asymptotic formula, $L^1$-norm, simple pendulum, logistic equation
@article{EJDE_2005__2005__a23,
     author = {Shibata, Tetsutaro},
     title = {Asymptotic shape of solutions to nonlinear eigenvalue problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a23/}
}
TY  - JOUR
AU  - Shibata, Tetsutaro
TI  - Asymptotic shape of solutions to nonlinear eigenvalue problems
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a23/
LA  - en
ID  - EJDE_2005__2005__a23
ER  - 
%0 Journal Article
%A Shibata, Tetsutaro
%T Asymptotic shape of solutions to nonlinear eigenvalue problems
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a23/
%G en
%F EJDE_2005__2005__a23
Shibata, Tetsutaro. Asymptotic shape of solutions to nonlinear eigenvalue problems. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a23/