Solutions approaching polynomials at infinity to nonlinear ordinary differential equations
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper concerns the solutions approaching polynomials at $\infty $ to $n$-th order ($n$) nonlinear ordinary differential equations, in which the nonlinear term depends on time $t$ and on $x,x',\dots ,x^{(N)}$, where $x$ is the unknown function and $N$ is an integer with $0\leq N\leq n-1$. For each given integer $m$ with $\max \{1,N\}\leq m\leq n-1$, conditions are given which guarantee that, for any real polynomial of degree at most $m$, there exists a solution that is asymptotic at $\infty $ to this polynomial. Sufficient conditions are also presented for every solution to be asymptotic at $\infty $ to a real polynomial of degree at most $n-1$. The results obtained extend those by the authors and by Purnaras [25] concerning the particular case $N=0$.
Classification : 34E05, 34E10, 34D05
Keywords: nonlinear differential equation, asymptotic properties, asymptotic expansions, asymptotic to polynomials solutions
@article{EJDE_2005__2005__a176,
     author = {Philos, Christos G. and Tsamatos, Panagiotis Ch.},
     title = {Solutions approaching polynomials at infinity to nonlinear ordinary differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a176/}
}
TY  - JOUR
AU  - Philos, Christos G.
AU  - Tsamatos, Panagiotis Ch.
TI  - Solutions approaching polynomials at infinity to nonlinear ordinary differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a176/
LA  - en
ID  - EJDE_2005__2005__a176
ER  - 
%0 Journal Article
%A Philos, Christos G.
%A Tsamatos, Panagiotis Ch.
%T Solutions approaching polynomials at infinity to nonlinear ordinary differential equations
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a176/
%G en
%F EJDE_2005__2005__a176
Philos, Christos G.; Tsamatos, Panagiotis Ch. Solutions approaching polynomials at infinity to nonlinear ordinary differential equations. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a176/