An $L^p$-approach for the study of degenerate parabolic equations
Electronic Journal of Differential Equations, Tome 2005 (2005).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We give regularity results for solutions of a parabolic equation in non-rectangular domains $U=\cup_{t\in ] 0,1[}\{ t\} \times I_{t}$ with $I_{t}=\{x:0$. The optimal regularity is obtained in the framework of the space $L^{p}$ with $p$ by considering the following cases: (1) When $\varphi (t)=t^{\alpha }, \alpha$ with a regular right-hand side belonging to a subspace of $L^{p}(U)$ and under assumption $\varphi (t)=t^{1/2}$ with a right-hand side taken only in $L^{p}(U)$. Our approach make use of the celebrated Dore-Venni results [2].
Classification : 35K05, 35K65, 35K90
Keywords: sum of linear operators, diffusion equation, non rectangular domain
@article{EJDE_2005__2005__a148,
     author = {Labbas, Rabah and Medeghri, Ahmed and Sadallah, Boubaker-Khaled},
     title = {An $L^p$-approach for the study of degenerate parabolic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2005},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a148/}
}
TY  - JOUR
AU  - Labbas, Rabah
AU  - Medeghri, Ahmed
AU  - Sadallah, Boubaker-Khaled
TI  - An $L^p$-approach for the study of degenerate parabolic equations
JO  - Electronic Journal of Differential Equations
PY  - 2005
VL  - 2005
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a148/
LA  - en
ID  - EJDE_2005__2005__a148
ER  - 
%0 Journal Article
%A Labbas, Rabah
%A Medeghri, Ahmed
%A Sadallah, Boubaker-Khaled
%T An $L^p$-approach for the study of degenerate parabolic equations
%J Electronic Journal of Differential Equations
%D 2005
%V 2005
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a148/
%G en
%F EJDE_2005__2005__a148
Labbas, Rabah; Medeghri, Ahmed; Sadallah, Boubaker-Khaled. An $L^p$-approach for the study of degenerate parabolic equations. Electronic Journal of Differential Equations, Tome 2005 (2005). http://geodesic.mathdoc.fr/item/EJDE_2005__2005__a148/