Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The existence of triple positive solutions for a boundary-value problem governed by the $\Phi$-Laplacian is investigated, when $\Phi$ is a so-called sup-multiplicative-like function (in a sense introduced in [22]) and the boundary conditions include nonlinear expressions at the end points (as in [21, 28]). The Leggett-Williams fixed point theorem in a cone is used. The results improve and generalize known results given in [21].
Classification : 34B15, 34B18
Keywords: boundary value problems, positive solutions, $\Phi$-Laplacian, Leggett-Williams fixed point theorem
@article{EJDE_2004__2004__a88,
     author = {Karakostas, George L.},
     title = {Triple positive solutions for the $\Phi${-Laplacian} when $\Phi$ is a sup-multiplicative-like function},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a88/}
}
TY  - JOUR
AU  - Karakostas, George L.
TI  - Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a88/
LA  - en
ID  - EJDE_2004__2004__a88
ER  - 
%0 Journal Article
%A Karakostas, George L.
%T Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a88/
%G en
%F EJDE_2004__2004__a88
Karakostas, George L. Triple positive solutions for the $\Phi$-Laplacian when $\Phi$ is a sup-multiplicative-like function. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a88/