Positive solutions for a class of quasilinear singular equations
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This article concerns the existence and uniqueness of solutions to the quasilinear equation $$ -\Delta_p u=\rho(x) f(u) \quad \hbox{in } \mathbb{R}^N $$ with $u greater than 0$ and $u(x)\to 0$ as $|x| \to \infty$. Here $1 less than p less than \infty, N \geq 3, \Delta_{p}$ is the $p$-Laplacian operator, $\rho$ and $f$ are positive functions, and $f$ is singular at 0. Our approach uses fixed point arguments, the shooting method, and a lower-upper solutions argument.
Classification : 35B40, 35J25, 35J60
Keywords: singular equations, radial positive solutions, fixed points, shooting method
@article{EJDE_2004__2004__a76,
     author = {Goncalves, Jose Valdo and Santos, Carlos Alberto P.},
     title = {Positive solutions for a class of quasilinear singular equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a76/}
}
TY  - JOUR
AU  - Goncalves, Jose Valdo
AU  - Santos, Carlos Alberto P.
TI  - Positive solutions for a class of quasilinear singular equations
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a76/
LA  - en
ID  - EJDE_2004__2004__a76
ER  - 
%0 Journal Article
%A Goncalves, Jose Valdo
%A Santos, Carlos Alberto P.
%T Positive solutions for a class of quasilinear singular equations
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a76/
%G en
%F EJDE_2004__2004__a76
Goncalves, Jose Valdo; Santos, Carlos Alberto P. Positive solutions for a class of quasilinear singular equations. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a76/