Local invariance via comparison functions
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the ordinary differential equation $$ \liminf_{h\downarrow 0}\frac{1}{h}\big[d(\xi+hf(t,\xi);K)-d(\xi;K)\big] \leq\omega(t,d(\xi;K)) $$ for each $(t,\xi)\in [a,b]\times D$, then $K$ is locally invariant with respect to $f$. We show further that, under some natural extra condition, the converse statement is also true.
Classification : 34A12, 34A34, 34C05, 34C40, 34C99
Keywords: viable domain, local invariant subset, exterior tangency condition, comparison property, Lipschitz retract
@article{EJDE_2004__2004__a28,
     author = {Carja, Ovidiu and Necula, Mihai and Vrabie, Ioan I.},
     title = {Local invariance via comparison functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a28/}
}
TY  - JOUR
AU  - Carja, Ovidiu
AU  - Necula, Mihai
AU  - Vrabie, Ioan I.
TI  - Local invariance via comparison functions
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a28/
LA  - en
ID  - EJDE_2004__2004__a28
ER  - 
%0 Journal Article
%A Carja, Ovidiu
%A Necula, Mihai
%A Vrabie, Ioan I.
%T Local invariance via comparison functions
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a28/
%G en
%F EJDE_2004__2004__a28
Carja, Ovidiu; Necula, Mihai; Vrabie, Ioan I. Local invariance via comparison functions. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a28/