Liouville's theorem and the restricted mean property for biharmonic functions
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that under certain conditions, a bounded Lebesgue measurable function satisfying the restricted mean value for biharmonic functions is constant, in $\mathbb{R}^n$ with $n\ge 3$.
Classification : 31B30
Keywords: biharmonic function, mean property, Liouville's theorem
@article{EJDE_2004__2004__a23,
     author = {El Kadiri, Mohamed},
     title = {Liouville's theorem and the restricted mean property for biharmonic functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a23/}
}
TY  - JOUR
AU  - El Kadiri, Mohamed
TI  - Liouville's theorem and the restricted mean property for biharmonic functions
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a23/
LA  - en
ID  - EJDE_2004__2004__a23
ER  - 
%0 Journal Article
%A El Kadiri, Mohamed
%T Liouville's theorem and the restricted mean property for biharmonic functions
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a23/
%G en
%F EJDE_2004__2004__a23
El Kadiri, Mohamed. Liouville's theorem and the restricted mean property for biharmonic functions. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a23/