Stability properties of non-negative solutions of semilinear symmetric cooperative systems
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We investigate the stability of non-negative stationary solutions of symmetric cooperative semilinear systems with some convex (resp. concave) nonlinearity condition, namely all second-order partial derivatives of each coordinate being non-negative (resp. non-positive). In these cases, we will show following [8], extending its results, that this along with some sign condition on the non-linearity at the origin yields instability (resp. stability).
Classification : 35K57, 35B35
Keywords: cooperative semilinear system, positive stationary solutions
@article{EJDE_2004__2004__a21,
     author = {Voros, Imre},
     title = {Stability properties of non-negative solutions of semilinear symmetric cooperative systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a21/}
}
TY  - JOUR
AU  - Voros, Imre
TI  - Stability properties of non-negative solutions of semilinear symmetric cooperative systems
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a21/
LA  - en
ID  - EJDE_2004__2004__a21
ER  - 
%0 Journal Article
%A Voros, Imre
%T Stability properties of non-negative solutions of semilinear symmetric cooperative systems
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a21/
%G en
%F EJDE_2004__2004__a21
Voros, Imre. Stability properties of non-negative solutions of semilinear symmetric cooperative systems. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a21/