Sub-supersolution theorems for quasilinear elliptic problems: A variational approach
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper presents a variational approach to obtain sub - supersolution theorems for a certain type of boundary value problem for a class of quasilinear elliptic partial differential equations. In the case of semilinear ordinary differential equations results of this type were first proved by Hans Knobloch in the early sixties using methods developed by Cesari.
Classification : 35B45, 35J65, 35J60
Keywords: sub and supersolutions, periodic solutions, variational approach
@article{EJDE_2004__2004__a197,
     author = {Le, Vy Khoi and Schmitt, Klaus},
     title = {Sub-supersolution theorems for quasilinear elliptic problems: {A} variational approach},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a197/}
}
TY  - JOUR
AU  - Le, Vy Khoi
AU  - Schmitt, Klaus
TI  - Sub-supersolution theorems for quasilinear elliptic problems: A variational approach
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a197/
LA  - en
ID  - EJDE_2004__2004__a197
ER  - 
%0 Journal Article
%A Le, Vy Khoi
%A Schmitt, Klaus
%T Sub-supersolution theorems for quasilinear elliptic problems: A variational approach
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a197/
%G en
%F EJDE_2004__2004__a197
Le, Vy Khoi; Schmitt, Klaus. Sub-supersolution theorems for quasilinear elliptic problems: A variational approach. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a197/