Reducibility of zero curvature equations
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: By introducing a natural reducibility definition for zero curvature equations, we give a Floquet representation for such systems and show applications to the reducibility problem for quasiperiodic 2-dimensional linear systems and to fiberwise linear dynamical systems on trivial vector bundles.
Classification : 34A30, 34A26, 34C20, 37C55
Keywords: zero-curvature equation, reducibility, Floquet representation, quasiperiodic linear systems, fiberwise linear dynamical system
@article{EJDE_2004__2004__a174,
     author = {Flores-Espinoza, Ruben},
     title = {Reducibility of zero curvature equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a174/}
}
TY  - JOUR
AU  - Flores-Espinoza, Ruben
TI  - Reducibility of zero curvature equations
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a174/
LA  - en
ID  - EJDE_2004__2004__a174
ER  - 
%0 Journal Article
%A Flores-Espinoza, Ruben
%T Reducibility of zero curvature equations
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a174/
%G en
%F EJDE_2004__2004__a174
Flores-Espinoza, Ruben. Reducibility of zero curvature equations. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a174/