Positive solutions for singular semi-positone Neumann boundary-value problems
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study the singular semi-positone Neumann boundary-value problem $$\displaylines{ -u''+m^2u=\lambda f(t,u)+g(t,u),\quad 0 less than t less than 1,\cr u'(0)=u'(1)=0, }$$ where $m$ is a positive constant. Under some suitable assumptions on the functions $f$ and $g$, for sufficiently small $\lambda$, we prove the existence of a positive solution. Our approach is based on the Krasnasel'skii fixed point theorem in cones.
Classification : 34B10, 34B15
Keywords: positive solution, semi-positone, fixed points, cone, singular Neumann boundary-value problem
@article{EJDE_2004__2004__a161,
     author = {Sun, Yong-Ping and Sun, Yan},
     title = {Positive solutions for singular semi-positone {Neumann} boundary-value problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a161/}
}
TY  - JOUR
AU  - Sun, Yong-Ping
AU  - Sun, Yan
TI  - Positive solutions for singular semi-positone Neumann boundary-value problems
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a161/
LA  - en
ID  - EJDE_2004__2004__a161
ER  - 
%0 Journal Article
%A Sun, Yong-Ping
%A Sun, Yan
%T Positive solutions for singular semi-positone Neumann boundary-value problems
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a161/
%G en
%F EJDE_2004__2004__a161
Sun, Yong-Ping; Sun, Yan. Positive solutions for singular semi-positone Neumann boundary-value problems. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a161/