A generalized solution to a Cahn-Hilliard/Allen-Cahn system
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study a system consisting of a Cahn-Hilliard and several Allen-Cahn type equations. This system was proposed by Fan, L.-Q. Chen, S. Chen and Voorhees for modelling Ostwald ripening in two-phase system. We prove the existence of a generalized solution whose concentration component is in $L^{\infty}$.
Classification : 47J35, 35K57, 35Q99
Keywords: Cahn-Hilliard and Allen-Cahn equations, ostwald ripening, phase transitions
@article{EJDE_2004__2004__a159,
     author = {Boldrini, Jose Luiz and da Silva, Patricia Nunes},
     title = {A generalized solution to a {Cahn-Hilliard/Allen-Cahn} system},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a159/}
}
TY  - JOUR
AU  - Boldrini, Jose Luiz
AU  - da Silva, Patricia Nunes
TI  - A generalized solution to a Cahn-Hilliard/Allen-Cahn system
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a159/
LA  - en
ID  - EJDE_2004__2004__a159
ER  - 
%0 Journal Article
%A Boldrini, Jose Luiz
%A da Silva, Patricia Nunes
%T A generalized solution to a Cahn-Hilliard/Allen-Cahn system
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a159/
%G en
%F EJDE_2004__2004__a159
Boldrini, Jose Luiz; da Silva, Patricia Nunes. A generalized solution to a Cahn-Hilliard/Allen-Cahn system. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a159/