A stochastic control problem
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study a specific stochastic differential equation depending on a parameter and obtain a representation of its probability density function in terms of Jacobi Functions. The equation arose in a control problem with a quadratic performance criteria. The quadratic performance is used to eliminate the control in the standard Hamilton-Jacobi variational technique. The resulting stochastic differential equation has a noise amplitude which complicates the solution. We then solve Kolmogorov's partial differential equation for the probability density function by using Jacobi Functions. A particular value of the parameter makes the solution a Martingale and in this case we prove that the solution goes to zero almost surely as time tends to infinity.
Classification : 60H05, 60H07
Keywords: stochastic differential equations, control problems, Jacobi functions
@article{EJDE_2004__2004__a154,
     author = {Margulies, William and Zes, Dean},
     title = {A stochastic control problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a154/}
}
TY  - JOUR
AU  - Margulies, William
AU  - Zes, Dean
TI  - A stochastic control problem
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a154/
LA  - en
ID  - EJDE_2004__2004__a154
ER  - 
%0 Journal Article
%A Margulies, William
%A Zes, Dean
%T A stochastic control problem
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a154/
%G en
%F EJDE_2004__2004__a154
Margulies, William; Zes, Dean. A stochastic control problem. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a154/