Existence of $\psi$-bounded solutions for a system of differential equations
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this article, we present a necessary and sufficient condition for the existence of solutions to the linear nonhomogeneous system $x'=A(t)x + f(t)$. Under the condition stated, for every Lebesgue $\Psi$-integrable function $f$ there is at least one $\Psi$-bounded solution on the interval $(0,+\infty)$.
Classification : 34D05, 34C11
Keywords: $\Psi$-bounded, Lebesgue $\Psi$-integrable function
@article{EJDE_2004__2004__a147,
     author = {Diamandescu, Aurel},
     title = {Existence of $\psi$-bounded solutions for a system of differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a147/}
}
TY  - JOUR
AU  - Diamandescu, Aurel
TI  - Existence of $\psi$-bounded solutions for a system of differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a147/
LA  - en
ID  - EJDE_2004__2004__a147
ER  - 
%0 Journal Article
%A Diamandescu, Aurel
%T Existence of $\psi$-bounded solutions for a system of differential equations
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a147/
%G en
%F EJDE_2004__2004__a147
Diamandescu, Aurel. Existence of $\psi$-bounded solutions for a system of differential equations. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a147/