Nonlinear triple-point problems on time scales
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$\displaylines{ u^{\Delta\nabla}(t)+h(t)f(t,u(t))=0, \cr u(a)=\alpha u(b)+\delta u^\Delta(a),\quad \beta u(c)+\gamma u^\Delta(c)=0 }$$ for $t\in[a,c]\subset\mathbb{T}$, where $\mathbb{T}$ is a time scale, $\beta, \gamma, \delta\ge 0$ with $\beta+\gamma>0, 0 less than \alpha less than \frac{c-a}{c-b}$ and $b\in(a,c)\subset\mathbb{T}$.
Classification : 34B10, 34B15, 39A10
Keywords: fixed-point theorems, time scales, dynamic equations, cone
@article{EJDE_2004__2004__a134,
     author = {Anderson, Douglas R.},
     title = {Nonlinear triple-point problems on time scales},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a134/}
}
TY  - JOUR
AU  - Anderson, Douglas R.
TI  - Nonlinear triple-point problems on time scales
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a134/
LA  - en
ID  - EJDE_2004__2004__a134
ER  - 
%0 Journal Article
%A Anderson, Douglas R.
%T Nonlinear triple-point problems on time scales
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a134/
%G en
%F EJDE_2004__2004__a134
Anderson, Douglas R. Nonlinear triple-point problems on time scales. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a134/