Characterizing degenerate Sturm-Liouville problems
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Consider the Dirichlet eigenvalue problem associated with the real two-term weighted Sturm-Liouville equation $$-(p(x)y')' = \lambda r(x)y$$ on the finite interval [a,b]. This eigenvalue problem will be called degenerate provided its spectrum fills the whole complex plane. Generally, in degenerate cases the coefficients $p(x), r(x)$ must each be sign indefinite on [a,b]. Indeed, except in some special cases, the quadratic forms induced by them on appropriate spaces must also be indefinite. In this note we present a necessary and sufficient condition for this boundary problem to be degenerate. Some extensions are noted.
Classification : 34B24, 34L05
Keywords: Sturm-Liouville theory, eigenvalues, degenerate operators, spectral theory, Dirichlet problem
@article{EJDE_2004__2004__a115,
     author = {Mingarelli, Angelo B.},
     title = {Characterizing degenerate {Sturm-Liouville} problems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a115/}
}
TY  - JOUR
AU  - Mingarelli, Angelo B.
TI  - Characterizing degenerate Sturm-Liouville problems
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a115/
LA  - en
ID  - EJDE_2004__2004__a115
ER  - 
%0 Journal Article
%A Mingarelli, Angelo B.
%T Characterizing degenerate Sturm-Liouville problems
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a115/
%G en
%F EJDE_2004__2004__a115
Mingarelli, Angelo B. Characterizing degenerate Sturm-Liouville problems. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a115/