Existence of infinitely many solutions for elliptic boundary-value problems with nonsymmetrical critical nonlinearity
Electronic Journal of Differential Equations, Tome 2004 (2004).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we study a semilinear elliptic boundary-value problem involving nonsymmetrical term with critical growth on a bounded smooth domain in $\mathbb{R}^n$. We show the existence of infinitely many weak solutions under the presence of some symmetric sublinear term, the corresponding critical values of the variational functional are negative and go to zero.
Classification : 35B50, 35J40
Keywords: Dirichlet problem, critical growth, non-symmetric perturbation, infinitely many solutions
@article{EJDE_2004__2004__a105,
     author = {Di, Geng},
     title = {Existence of infinitely many solutions for elliptic boundary-value problems with nonsymmetrical critical nonlinearity},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2004},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a105/}
}
TY  - JOUR
AU  - Di, Geng
TI  - Existence of infinitely many solutions for elliptic boundary-value problems with nonsymmetrical critical nonlinearity
JO  - Electronic Journal of Differential Equations
PY  - 2004
VL  - 2004
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a105/
LA  - en
ID  - EJDE_2004__2004__a105
ER  - 
%0 Journal Article
%A Di, Geng
%T Existence of infinitely many solutions for elliptic boundary-value problems with nonsymmetrical critical nonlinearity
%J Electronic Journal of Differential Equations
%D 2004
%V 2004
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a105/
%G en
%F EJDE_2004__2004__a105
Di, Geng. Existence of infinitely many solutions for elliptic boundary-value problems with nonsymmetrical critical nonlinearity. Electronic Journal of Differential Equations, Tome 2004 (2004). http://geodesic.mathdoc.fr/item/EJDE_2004__2004__a105/