Exponential stability of linear and almost periodic systems on Banach spaces
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $$ \dot v(t)=A(t)v(t)+f(t), \quad v(0)=0\quad t\ge 0 $$ on a complex Banach space $$ \dot u(t)=A(t)u(t), \quad u(0)=x\quad t\ge 0 $$ is uniformly exponentially stable. Our approach is based on the spectral theory of evolution semigroups.
Classification : 35B10, 35B15, 35B40, 47A10, 47D03
Keywords: almost periodic functions, uniform exponential stability, evolution semigroups
@article{EJDE_2003__2003__a9,
     author = {Bu\c{s}e, Constantin and Lupulescu, Vasile},
     title = {Exponential stability of linear and almost periodic systems on {Banach} spaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a9/}
}
TY  - JOUR
AU  - Buşe, Constantin
AU  - Lupulescu, Vasile
TI  - Exponential stability of linear and almost periodic systems on Banach spaces
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a9/
LA  - en
ID  - EJDE_2003__2003__a9
ER  - 
%0 Journal Article
%A Buşe, Constantin
%A Lupulescu, Vasile
%T Exponential stability of linear and almost periodic systems on Banach spaces
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a9/
%G en
%F EJDE_2003__2003__a9
Buşe, Constantin; Lupulescu, Vasile. Exponential stability of linear and almost periodic systems on Banach spaces. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a9/