Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the Schrodinger type differential expression $$ H_V=\nabla^*\nabla+V, $$ where $\nabla$ is a $C^{\infty}$-bounded Hermitian connection on a Hermitian vector bundle $E$ of bounded geometry over a manifold of bounded geometry $(M,g)$ with metric $g$ and positive $C^{\infty}$-bounded measure $d\mu$, and $V=V_1+V_2$, where $0\leq V_1$ in $L_{\rm loc}^1(\mathop{\rm End} E)$ and $0\geq V_2$ in $L_{\rm loc}^1(\mathop{\rm End} E)$ are linear self-adjoint bundle endomorphisms. We give a sufficient condition for self-adjointness of the operator $S$ in $L^2(E)$ defined by $Su=H_Vu$ for all $u\in\mathop{\rm Dom}(S)=\{u\in W^{1,2}(E)\colon \int\langle V_1u,u\rangle\,d\mu+\infty \hbox{ and }H_Vu\in L^2(E)\}$. The proof follows the scheme of Kato, but it requires the use of more general version of Kato's inequality for Bochner Laplacian operator as well as a result on the positivity of $u\in L^2(M)$ satisfying the equation $(\Delta_M+b)u=\nu$, where $\Delta_M$ is the scalar Laplacian on $M, b greater than 0$ is a constant and $\nu\geq 0$ is a positive distribution on $M$.
Classification : 35P05, 58J50, 47B25, 81Q10
Keywords: Schrödinger operator, self-adjointness, manifold, bounded geometry
@article{EJDE_2003__2003__a66,
     author = {Milatovic, Ognjen},
     title = {Self-adjointness of {Schr\"odinger-type} operators with singular potentials on manifolds of bounded geometry},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a66/}
}
TY  - JOUR
AU  - Milatovic, Ognjen
TI  - Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a66/
LA  - en
ID  - EJDE_2003__2003__a66
ER  - 
%0 Journal Article
%A Milatovic, Ognjen
%T Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a66/
%G en
%F EJDE_2003__2003__a66
Milatovic, Ognjen. Self-adjointness of Schrödinger-type operators with singular potentials on manifolds of bounded geometry. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a66/