Remarks on semilinear problems with nonlinearities depending on the derivative
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we continue some work by Canada and Drabek [1] and Mawhin [6] on the range of the Neumann and Periodic boundary value problems: $$\displaylines{ \mathbf{u}''(t)+\mathbf{g}(t,\mathbf{u}'(t))= \overline{\mathbf{f}}+\widetilde{\mathbf{f}}(t), \quad t\in (a,b) \cr \mathbf{u}'(a)=\mathbf{u}'(b)=0 \cr \hbox{or}\quad \mathbf{u}(a)=\mathbf{u}(b),\quad \mathbf{u}'(a)=\mathbf{u}'(b) }$$ where $\mathbf{g}\in C([a,b]\times \mathbb{R}^{n},\mathbb{R}^n), \overline{\mathbf{f}}\in \mathbb{R}^n$, and $\widetilde{\mathbf{f}}$ has mean value zero. For the Neumann problem with $n greater than 1$, we prove that for a fixed $\widetilde{\mathbf{f}}$ the range can contain an infinity continuum. For the one dimensional case, we study the asymptotic behavior of the range in both problems.
Classification : 34B15, 34L30
Keywords: nonlinear boundary-value problem, Neumann and periodic problems
@article{EJDE_2003__2003__a26,
     author = {Almira, Jose Mar{\'\i}a and Del Toro, Naira},
     title = {Remarks on semilinear problems with nonlinearities depending on the derivative},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a26/}
}
TY  - JOUR
AU  - Almira, Jose María
AU  - Del Toro, Naira
TI  - Remarks on semilinear problems with nonlinearities depending on the derivative
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a26/
LA  - en
ID  - EJDE_2003__2003__a26
ER  - 
%0 Journal Article
%A Almira, Jose María
%A Del Toro, Naira
%T Remarks on semilinear problems with nonlinearities depending on the derivative
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a26/
%G en
%F EJDE_2003__2003__a26
Almira, Jose María; Del Toro, Naira. Remarks on semilinear problems with nonlinearities depending on the derivative. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a26/