Analytic solution to a class of integro-differential equations
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we consider the integro-differential equation $$ \epsilon^2 y''(x)+L(x){\cal H}(y)=N(\epsilon,x,y,{\cal H}(y)), $$ where ${cal H}(y)[x]=\frac{1}{\pi}(P)\int_{-\infty}^{\infty} \frac{y(t)}{t-x}dt$ is the Hilbert transform. The existence and uniqueness of analytic solution in appropriately chosen space is proved. Our method consists of extending the equation to an appropriately chosen region in the complex plane, then use the Contraction Mapping Theorem.
Classification : 34A20, 45E05
Keywords: analytic solution, singular integro-differential equation
@article{EJDE_2003__2003__a195,
     author = {Xie, Xuming},
     title = {Analytic solution to a class of integro-differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a195/}
}
TY  - JOUR
AU  - Xie, Xuming
TI  - Analytic solution to a class of integro-differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a195/
LA  - en
ID  - EJDE_2003__2003__a195
ER  - 
%0 Journal Article
%A Xie, Xuming
%T Analytic solution to a class of integro-differential equations
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a195/
%G en
%F EJDE_2003__2003__a195
Xie, Xuming. Analytic solution to a class of integro-differential equations. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a195/