Synchronization of nonautonomous dynamical systems
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The synchronization of two nonautonomous dynamical systems is considered, where the systems are described in terms of a skew-product formalism, i. e., in which an inputed autonomous driving system governs the evolution of the vector field of a differential equation with the passage of time. It is shown that the coupled trajectories converge to each other as time increases for sufficiently large coupling coefficient and also that the component sets of the pullback attractor of the coupled system converges upper semi continuously as the coupling parameter increases to the diagonal of the product of the corresponding component sets of the pullback attractor of a system generated by the average of the vector fields of the original uncoupled systems.
Classification : 37B55, 34D45
Keywords: nonautonomous semidynamical system, skew-product semi-flow, pullback attractor
@article{EJDE_2003__2003__a192,
     author = {Kloeden, Peter E.},
     title = {Synchronization of nonautonomous dynamical systems},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a192/}
}
TY  - JOUR
AU  - Kloeden, Peter E.
TI  - Synchronization of nonautonomous dynamical systems
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a192/
LA  - en
ID  - EJDE_2003__2003__a192
ER  - 
%0 Journal Article
%A Kloeden, Peter E.
%T Synchronization of nonautonomous dynamical systems
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a192/
%G en
%F EJDE_2003__2003__a192
Kloeden, Peter E. Synchronization of nonautonomous dynamical systems. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a192/