The Kolmogorov equation with time-measurable coefficients
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using both probabilistic and classical analytic techniques, we investigate the parabolic Kolmogorov equation $$ L_t v +\frac {\partial v}{\partial t}\equiv \frac 12 a^{ij}(t)v_{x^ix^j} +b^i(t) v_{x^i} -c(t) v+ f(t) +\frac {\partial v}{\partial t}=0 $$ in $H_T:=(0,T) \times E_d$ and its solutions when the coefficients are bounded Borel measurable functions of $t$. We show that the probabilistic solution $v(t,x)$ defined in $\bar H_T$, is twice differentiable with respect to $x$, continuously in $(t,x)$, once differentiable with respect to $t$, a.e. $t \in [0,T)$ and satisfies the Kolmogorov equation $L_t v +\frac {\partial v}{\partial t}=0$ a.e. in $\bar H_T$. Our main tool will be the Aleksandrov-Busemann-Feller Theorem. We also examine the probabilistic solution to the fully nonlinear Bellman equation with time-measurable coefficients in the simple case $b\equiv 0,\,c\equiv 0$. We show that when the terminal data function is a paraboloid, the payoff function has a particularly simple form.
Classification : 35K15, 35B65, 60J60
Keywords: diffusion processes, Kolmogorov equation, bellman equation
@article{EJDE_2003__2003__a187,
     author = {Kovats, Jay},
     title = {The {Kolmogorov} equation with time-measurable coefficients},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a187/}
}
TY  - JOUR
AU  - Kovats, Jay
TI  - The Kolmogorov equation with time-measurable coefficients
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a187/
LA  - en
ID  - EJDE_2003__2003__a187
ER  - 
%0 Journal Article
%A Kovats, Jay
%T The Kolmogorov equation with time-measurable coefficients
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a187/
%G en
%F EJDE_2003__2003__a187
Kovats, Jay. The Kolmogorov equation with time-measurable coefficients. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a187/