Positive solutions of a three-point boundary-value problem on a time scale
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Let $$\displaylines{ u^{\Delta\nabla}(t) + a(t)f(u(t)) = 0, \quad t \in (0,T) \cap \mathbb{T},\cr u(0) = 0, \quad \alpha u(\eta) = u(T), }$$ where $\eta \in (0, \rho(T)) \cap \mathbb{T}$, and $0 \alpha $. We apply a cone theoretic fixed point theorem to show the existence of positive solutions.
Classification : 34B10, 34B15, 34G20
Keywords: time scale, cone, boundary-value problem, positive solutions
@article{EJDE_2003__2003__a180,
     author = {Kaufmann, Eric R.},
     title = {Positive solutions of a three-point boundary-value problem on a time scale},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a180/}
}
TY  - JOUR
AU  - Kaufmann, Eric R.
TI  - Positive solutions of a three-point boundary-value problem on a time scale
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a180/
LA  - en
ID  - EJDE_2003__2003__a180
ER  - 
%0 Journal Article
%A Kaufmann, Eric R.
%T Positive solutions of a three-point boundary-value problem on a time scale
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a180/
%G en
%F EJDE_2003__2003__a180
Kaufmann, Eric R. Positive solutions of a three-point boundary-value problem on a time scale. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a180/