Two convergence results for continuous descent methods
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider continuous descent methods for the minimization of convex functionals defined on general Banach space. We establish two convergence results for methods which are generated by regular vector fields. Since the complement of the set of regular vector fields is $\sigma$-porous, we conclude that our results apply to most vector fields in the sense of Baire's categories.
Classification : 37L99, 47J35, 49M99, 54E50, 54E52, 90C25
Keywords: complete metric space, convex function, descent method, porous set
@article{EJDE_2003__2003__a178,
     author = {Reich, Simeon and Zaslavski, Alexander J.},
     title = {Two convergence results for continuous descent methods},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a178/}
}
TY  - JOUR
AU  - Reich, Simeon
AU  - Zaslavski, Alexander J.
TI  - Two convergence results for continuous descent methods
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a178/
LA  - en
ID  - EJDE_2003__2003__a178
ER  - 
%0 Journal Article
%A Reich, Simeon
%A Zaslavski, Alexander J.
%T Two convergence results for continuous descent methods
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a178/
%G en
%F EJDE_2003__2003__a178
Reich, Simeon; Zaslavski, Alexander J. Two convergence results for continuous descent methods. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a178/