Blow up of solutions to semilinear wave equations
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This work shows the absence of global solutions to the equation $$ u_{tt} = \Delta u + p^{-k}|u|^m,$$ in the Minkowski space $\mathbb{M}_0=\mathbb{R}\times\mathbb{R}^N$, where $ m greater than 1, (N-1)m less than N+1$, and $p $ is a conformal factor approaching 0 at infinity. Using a modification of the method of conformal compactification, we prove that any solution develops a singularity at a finite time.
Classification : 35L70, 35B40, 35L15
Keywords: blow up, conformal compactification
@article{EJDE_2003__2003__a164,
     author = {Guedda, Mohammed},
     title = {Blow up of solutions to semilinear wave equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a164/}
}
TY  - JOUR
AU  - Guedda, Mohammed
TI  - Blow up of solutions to semilinear wave equations
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a164/
LA  - en
ID  - EJDE_2003__2003__a164
ER  - 
%0 Journal Article
%A Guedda, Mohammed
%T Blow up of solutions to semilinear wave equations
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a164/
%G en
%F EJDE_2003__2003__a164
Guedda, Mohammed. Blow up of solutions to semilinear wave equations. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a164/