A discontinuous problem involving the $p$-Laplacian operator and critical exponent in $\Bbb R^N$
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Using convex analysis, we establish the existence of at least two nonnegative solutions for the quasilinear problem $$ -\Delta_{p}u=H(u-a)u^{p^*-1} +\lambda h(x)\quad\hbox{in }\mathbb{R}^N $$ where $\Delta_{p}u$ is the $p$-Laplacian operator, $H$ is the Heaviside function, $p^*$ is the Sobolev critical exponent, and $h$ is a positive function.
Classification : 35A15, 35J60, 35H30
Keywords: variational methods, discontinuous nonlinearities, critical exponents
@article{EJDE_2003__2003__a156,
     author = {Alves, Claudianor Oliveira and Bertone, Ana Maria},
     title = {A discontinuous problem involving the $p${-Laplacian} operator and critical exponent in $\Bbb R^N$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a156/}
}
TY  - JOUR
AU  - Alves, Claudianor Oliveira
AU  - Bertone, Ana Maria
TI  - A discontinuous problem involving the $p$-Laplacian operator and critical exponent in $\Bbb R^N$
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a156/
LA  - en
ID  - EJDE_2003__2003__a156
ER  - 
%0 Journal Article
%A Alves, Claudianor Oliveira
%A Bertone, Ana Maria
%T A discontinuous problem involving the $p$-Laplacian operator and critical exponent in $\Bbb R^N$
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a156/
%G en
%F EJDE_2003__2003__a156
Alves, Claudianor Oliveira; Bertone, Ana Maria. A discontinuous problem involving the $p$-Laplacian operator and critical exponent in $\Bbb R^N$. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a156/