Asymptotic behavior for a heat conduction problem with perfect-contact boundary condition
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we consider the heat conduction problem for a slab represented by the interval $[0,1]$. The initial temperature is a positive constant, the flux at the left end is also a positive constant, and at the right end there is a perfect contact condition: $u_{x}(1,t)+\gamma u_{t}(1,t)=0$. We analyze the asymptotic behavior of these problems as $\gamma$ approaches infinity, and present some numerical calculations.
Classification : 35K60, 35R35
Keywords: heat conduction, phase change, free boundary, perfect contact
@article{EJDE_2003__2003__a134,
     author = {Barrea, Andr\'es and Turner, Cristina},
     title = {Asymptotic behavior for a heat conduction problem with perfect-contact boundary condition},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a134/}
}
TY  - JOUR
AU  - Barrea, Andrés
AU  - Turner, Cristina
TI  - Asymptotic behavior for a heat conduction problem with perfect-contact boundary condition
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a134/
LA  - en
ID  - EJDE_2003__2003__a134
ER  - 
%0 Journal Article
%A Barrea, Andrés
%A Turner, Cristina
%T Asymptotic behavior for a heat conduction problem with perfect-contact boundary condition
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a134/
%G en
%F EJDE_2003__2003__a134
Barrea, Andrés; Turner, Cristina. Asymptotic behavior for a heat conduction problem with perfect-contact boundary condition. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a134/