Radial minimizer of a variant of the $p$-Ginzburg-Landau functional
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the asymptotic behavior of the radial minimizer of a variant of the p-Ginzburg-Landau functional when $p \geq n$. The location of the zeros and the uniqueness of the radial minimizer are derived. We also prove the $W^{1,p}$ convergence of the radial minimizer for this functional.
Classification : 35J70, 49K20
Keywords: radial minimizer
@article{EJDE_2003__2003__a124,
     author = {Lei, Yutian},
     title = {Radial minimizer of a variant of the $p${-Ginzburg-Landau} functional},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a124/}
}
TY  - JOUR
AU  - Lei, Yutian
TI  - Radial minimizer of a variant of the $p$-Ginzburg-Landau functional
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a124/
LA  - en
ID  - EJDE_2003__2003__a124
ER  - 
%0 Journal Article
%A Lei, Yutian
%T Radial minimizer of a variant of the $p$-Ginzburg-Landau functional
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a124/
%G en
%F EJDE_2003__2003__a124
Lei, Yutian. Radial minimizer of a variant of the $p$-Ginzburg-Landau functional. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a124/