Multidimensional singular $\lambda$-lemma
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: The well known $\lambda$-lemma [3] states the following: Let $f$ be a $C^1$-diffeomorphism of $\mathbb{R}^n$ with a hyperbolic fixed point at 0 and $m$- and $p$-dimensional stable and unstable manifolds $W^S$ and $W^U$, respectively ($m+p=n$). Let $D$ be a $p$-disk in $W^U$ and $w$ be another p-disk in $W^U$ meeting $W^S$ at some point $A$ transversely. Then $\bigcup_{n\geq 0} f^n(w)$ contains $p$-disk arbitrarily $C^1$-close to $D$. In this paper we will show that the same assertion still holds outside of an arbitrarily small neighborhood of 0, even in the case of non-transverse homoclinic intersections with finite order of contact, if we assume that 0 is a low order non-resonant point.
Classification : 37B10, 37C05, 37C15, 37D10
Keywords: homoclinic tangency, invariant manifolds, lambda-Lemma, order of contact
@article{EJDE_2003__2003__a123,
     author = {Rayskin, Victoria},
     title = {Multidimensional singular $\lambda$-lemma},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a123/}
}
TY  - JOUR
AU  - Rayskin, Victoria
TI  - Multidimensional singular $\lambda$-lemma
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a123/
LA  - en
ID  - EJDE_2003__2003__a123
ER  - 
%0 Journal Article
%A Rayskin, Victoria
%T Multidimensional singular $\lambda$-lemma
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a123/
%G en
%F EJDE_2003__2003__a123
Rayskin, Victoria. Multidimensional singular $\lambda$-lemma. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a123/