Estimates for derivatives of the Green functions for the noncoercive differential operators on homogeneous manifolds of negative curvature. II
Electronic Journal of Differential Equations, Tome 2003 (2003).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider the Green functions for second order non-coercive differential operators on homogeneous manifolds of negative curvature, being a semi-direct product of a nilpotent Lie group $N$ and $A=\mathbb{R}^+$. We obtain estimates for the mixed derivatives of the Green functions that complements a previous work by the same author [17].
Classification : 11E25, 43A85, 53C30, 31B25
Keywords: Green function, homogeneous manifolds of negative curvature, NA groups, evolutions on nilpotent Lie groups
@article{EJDE_2003__2003__a11,
     author = {Urban, Roman},
     title = {Estimates for derivatives of the {Green} functions for the noncoercive differential operators on homogeneous manifolds of negative curvature. {II}},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2003},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a11/}
}
TY  - JOUR
AU  - Urban, Roman
TI  - Estimates for derivatives of the Green functions for the noncoercive differential operators on homogeneous manifolds of negative curvature. II
JO  - Electronic Journal of Differential Equations
PY  - 2003
VL  - 2003
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a11/
LA  - en
ID  - EJDE_2003__2003__a11
ER  - 
%0 Journal Article
%A Urban, Roman
%T Estimates for derivatives of the Green functions for the noncoercive differential operators on homogeneous manifolds of negative curvature. II
%J Electronic Journal of Differential Equations
%D 2003
%V 2003
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a11/
%G en
%F EJDE_2003__2003__a11
Urban, Roman. Estimates for derivatives of the Green functions for the noncoercive differential operators on homogeneous manifolds of negative curvature. II. Electronic Journal of Differential Equations, Tome 2003 (2003). http://geodesic.mathdoc.fr/item/EJDE_2003__2003__a11/