Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider a non-local initial boundary-value problem for the equation $$ u_t=\Delta u+\lambda f(u)/\Big(\int_{\Omega}f(u)\,dx\Big)^2 ,\quad x \in \Omega \subset \mathbb{R}^2 ,\,\;t>0, $$ where $u$ represents a temperature and $f$ is a positive and decreasing function. It is shown that for the radially symmetric case, if $u$ blows up, whereas for $\lambda=\lambda^{\ast}$ at least one solution. Stability and blow-up of these solutions are examined in this article.
Classification : 35B30, 35B40, 35K20, 35K55, 35K99
Keywords: nonlocal parabolic equations, blow-up, global existence, steady states
@article{EJDE_2002__2002__a60,
     author = {Tzanetis, Dimitrios E.},
     title = {Blow-up of radially symmetric solutions of a non-local problem modelling {Ohmic} heating},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a60/}
}
TY  - JOUR
AU  - Tzanetis, Dimitrios E.
TI  - Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a60/
LA  - en
ID  - EJDE_2002__2002__a60
ER  - 
%0 Journal Article
%A Tzanetis, Dimitrios E.
%T Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a60/
%G en
%F EJDE_2002__2002__a60
Tzanetis, Dimitrios E. Blow-up of radially symmetric solutions of a non-local problem modelling Ohmic heating. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a60/