Positive solutions of nonlinear elliptic equations in a half space in $\bbfR^2$
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the existence and the asymptotic behaviour of positive solutions of the nonlinear equation $\Delta u+f(.,u)=0$, in the domain $D=\{(x_1,x_2)\in \mathbb{R}^2:x_2 greater than 0\}$, with $u=0$ on the boundary. The aim is to prove some existence results for the above equation in a general setting by using a fixed-point argument.
Classification : 31A25, 31A35, 34B15, 34B27, 35J65
Keywords: singular elliptic equation, superharmonic function, Green function, Schauder fixed point theorem, maximun principle
@article{EJDE_2002__2002__a272,
     author = {Bachar, Imed and M\^aagli, Habib and M\^aatoug, Lamia},
     title = {Positive solutions of nonlinear elliptic equations in a half space in $\bbfR^2$},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a272/}
}
TY  - JOUR
AU  - Bachar, Imed
AU  - Mâagli, Habib
AU  - Mâatoug, Lamia
TI  - Positive solutions of nonlinear elliptic equations in a half space in $\bbfR^2$
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a272/
LA  - en
ID  - EJDE_2002__2002__a272
ER  - 
%0 Journal Article
%A Bachar, Imed
%A Mâagli, Habib
%A Mâatoug, Lamia
%T Positive solutions of nonlinear elliptic equations in a half space in $\bbfR^2$
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a272/
%G en
%F EJDE_2002__2002__a272
Bachar, Imed; Mâagli, Habib; Mâatoug, Lamia. Positive solutions of nonlinear elliptic equations in a half space in $\bbfR^2$. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a272/