A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove that the evolution semigroup on $AAP_0(\mathbb{R}_+, X)$ is strongly continuous. Then we prove some properties of the generator of this evolution semigroup and show some applications in the theory of inequalities.
Classification : 47G10, 47D03, 47A63
Keywords: periodic families, almost periodic functions, exponential stability
@article{EJDE_2002__2002__a234,
     author = {Bu\c{s}e, Constantin},
     title = {A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a234/}
}
TY  - JOUR
AU  - Buşe, Constantin
TI  - A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a234/
LA  - en
ID  - EJDE_2002__2002__a234
ER  - 
%0 Journal Article
%A Buşe, Constantin
%T A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a234/
%G en
%F EJDE_2002__2002__a234
Buşe, Constantin. A spectral mapping theorem for evolution semigroups on asymptotically almost periodic functions defined on the half line. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a234/