Existence of global solutions for systems of reaction-diffusion equations on unbounded domains
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We consider, an initial-value problem for the thermal-diffusive combustion system $$\displaylines{ u_t=a\Delta u-uh(v) \cr v_t=b\Delta u+d\Delta v+uh(v), }$$ where $d positive, b\neq 0, x\in \mathbb{R}^n, n\geq 1$, with $h(v)=v^m, m$ is an even nonnegative integer, and the initial data $u_0, v_0$ are bounded uniformly continuous and nonnegative. It is known that by a simple comparison if $b=0, a=1, d\leq 1$ and $h(v)=v^m$ with $m\in \mathbb{N}^*$, the solutions are uniformly bounded in time. When $d greater than a=1, b=0, h(v)=v^m$ with $m\in \mathbb{N}^*$, Collet and Xin [2] proved the existence of global classical solutions and showed that the $L^\infty $ norm of $v$ can not grow faster than $O(\log\log t)$ for any space dimension. In our case, no comparison principle seems to apply. Nevertheless using techniques form [2], we essentially prove the existence of global classical solutions if $a less than d, b less than 0$, and $v_0\geq \frac b{a-d}u_0$.
Classification : 35B40, 35B45, 35K55, 35K65
Keywords: reaction-diffusion systems, positivity, global existence, boundedness
@article{EJDE_2002__2002__a231,
     author = {Badraoui, Salah},
     title = {Existence of global solutions for systems of reaction-diffusion equations on unbounded domains},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a231/}
}
TY  - JOUR
AU  - Badraoui, Salah
TI  - Existence of global solutions for systems of reaction-diffusion equations on unbounded domains
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a231/
LA  - en
ID  - EJDE_2002__2002__a231
ER  - 
%0 Journal Article
%A Badraoui, Salah
%T Existence of global solutions for systems of reaction-diffusion equations on unbounded domains
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a231/
%G en
%F EJDE_2002__2002__a231
Badraoui, Salah. Existence of global solutions for systems of reaction-diffusion equations on unbounded domains. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a231/