Regularity for solutions to the Navier-Stokes equations with one velocity component regular
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we establish a regularity criterion for solutions to the Navier-stokes equations, which is only related to one component of the velocity field. Let $(u, p)$ be a weak solution to the Navier-Stokes equations. We show that if any one component of the velocity field $u$, for example $u_3$, satisfies either $u_3 \in L^\infty({\mathbb{R}}^3\times (0, T))$ or $\nabla u_3 \in L^p (0, T; L^q({\mathbb{R}}^3))$ with $1/p + 3/2q = 1/2$ and $q \geq 3$ for some positive $T$, then $u$ is regular on $[0, T]$.
Classification : 35Q30, 76D05
Keywords: Navier-Stokes equations, weak solutions, regularity
@article{EJDE_2002__2002__a196,
     author = {He, Cheng},
     title = {Regularity for solutions to the {Navier-Stokes} equations with one velocity component regular},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a196/}
}
TY  - JOUR
AU  - He, Cheng
TI  - Regularity for solutions to the Navier-Stokes equations with one velocity component regular
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a196/
LA  - en
ID  - EJDE_2002__2002__a196
ER  - 
%0 Journal Article
%A He, Cheng
%T Regularity for solutions to the Navier-Stokes equations with one velocity component regular
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a196/
%G en
%F EJDE_2002__2002__a196
He, Cheng. Regularity for solutions to the Navier-Stokes equations with one velocity component regular. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a196/