Relaxation approximations and bounded variation estimates for some partial differential equations
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we introduce a new technique for studying solutions of bounded variation for some conservation laws of first order partial differential equations and for some degenerate parabolic equations in multi-dimensional space. The connection between these two types of equations is the vanishing relaxation method.
Classification : 35B40, 35D10, 35K15, 35K65, 35L65
Keywords: degenerate parabolic equation, hyperbolic conservation laws, relaxation approximation
@article{EJDE_2002__2002__a182,
     author = {Caicedo, Francisco and Lu, Yunguang and Sup\'ulveda, Mauricio},
     title = {Relaxation approximations and bounded variation estimates for some partial differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a182/}
}
TY  - JOUR
AU  - Caicedo, Francisco
AU  - Lu, Yunguang
AU  - Supúlveda, Mauricio
TI  - Relaxation approximations and bounded variation estimates for some partial differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a182/
LA  - en
ID  - EJDE_2002__2002__a182
ER  - 
%0 Journal Article
%A Caicedo, Francisco
%A Lu, Yunguang
%A Supúlveda, Mauricio
%T Relaxation approximations and bounded variation estimates for some partial differential equations
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a182/
%G en
%F EJDE_2002__2002__a182
Caicedo, Francisco; Lu, Yunguang; Supúlveda, Mauricio. Relaxation approximations and bounded variation estimates for some partial differential equations. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a182/