Regularity bounds on Zakharov system evolutions
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: Spatial regularity properties of certain global-in-time solutions of the Zakharov system are established. In particular, the evolving solution $u(t)$ is shown to satisfy an estimate $\|u(t)\|_{H^s} \leq C |t|^{(s-1)+}$, where $H^s$ is the standard spatial Sobolev norm. The proof is an adaptation of earlier work on the nonlinear Schrodinger equation which reduces matters to bilinear estimates.
Classification : 35Q55
Keywords: initial value problems, bilinear estimates, zakharov system, weak turbulence
@article{EJDE_2002__2002__a18,
     author = {Colliander, James and Staffilani, Gigliola},
     title = {Regularity bounds on {Zakharov} system evolutions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a18/}
}
TY  - JOUR
AU  - Colliander, James
AU  - Staffilani, Gigliola
TI  - Regularity bounds on Zakharov system evolutions
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a18/
LA  - en
ID  - EJDE_2002__2002__a18
ER  - 
%0 Journal Article
%A Colliander, James
%A Staffilani, Gigliola
%T Regularity bounds on Zakharov system evolutions
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a18/
%G en
%F EJDE_2002__2002__a18
Colliander, James; Staffilani, Gigliola. Regularity bounds on Zakharov system evolutions. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a18/