Upper semicontinuity of attractors of non-autonomous dynamical systems for small perturbations
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the problem of upper semicontinuity of compact global attractors of non-autonomous dynamical systems for small perturbations. For the general nonautonomous dynamical systems, we give the conditions of upper semicontinuity of attractors for small parameter. Several applications of these results are given (quasihomogeneous systems, monotone systems, nonautonomously perturbed systems, nonautonomous 2D Navier-Stokes equations and quasilinear functional-differential equations).
Classification : 34D20, 34D40, 34D45, 58F10, 58F12, 35B35, 35B40
Keywords: monotone system, nonautonomous dynamical system, skew-product flow, global attractor
@article{EJDE_2002__2002__a162,
     author = {Cheban, David N.},
     title = {Upper semicontinuity of attractors of non-autonomous dynamical systems for small perturbations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a162/}
}
TY  - JOUR
AU  - Cheban, David N.
TI  - Upper semicontinuity of attractors of non-autonomous dynamical systems for small perturbations
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a162/
LA  - en
ID  - EJDE_2002__2002__a162
ER  - 
%0 Journal Article
%A Cheban, David N.
%T Upper semicontinuity of attractors of non-autonomous dynamical systems for small perturbations
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a162/
%G en
%F EJDE_2002__2002__a162
Cheban, David N. Upper semicontinuity of attractors of non-autonomous dynamical systems for small perturbations. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a162/