On plane polynomial vector fields and the Poincaré problem
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we address the Poincare problem, on plane polynomial vector fields, under some conditions on the nature of the singularities of invariant curves. Our main idea consists in transforming a given vector field of degree m into another one of degree at most m+1 having its invariant curves in projective quasi-generic position. This allows us to give bounds on degree for some well known classes of curves such as the nonsingular ones and curves with ordinary nodes. We also give a bound on degree for any invariant curve in terms of the maximum Tjurina number of its singularities and the degree of the vector field.
Classification : 34C05, 34A34, 34C14
Keywords: polynomial vector fields, invariant algebraic curves, intersection numbers, tjurina number, Bezout theorem
@article{EJDE_2002__2002__a144,
     author = {El Kahoui, M'hammed},
     title = {On plane polynomial vector fields and the {Poincar\'e} problem},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a144/}
}
TY  - JOUR
AU  - El Kahoui, M'hammed
TI  - On plane polynomial vector fields and the Poincaré problem
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a144/
LA  - en
ID  - EJDE_2002__2002__a144
ER  - 
%0 Journal Article
%A El Kahoui, M'hammed
%T On plane polynomial vector fields and the Poincaré problem
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a144/
%G en
%F EJDE_2002__2002__a144
El Kahoui, M'hammed. On plane polynomial vector fields and the Poincaré problem. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a144/