Compact attractors for a Stefan problem with kinetics
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We prove existence of a unique bounded classical solution for a one-phase free-boundary problem with kinetics for continuous initial conditions. The main result of this paper establishes existence of a compact attractor for classical solutions of the problem.
Classification : 35R35, 74N20, 80A25
Keywords: Stefan problem, compact attractors, kinetic condition
@article{EJDE_2002__2002__a142,
     author = {Frankel, Michael L. and Roytburd, Victor},
     title = {Compact attractors for a {Stefan} problem with kinetics},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a142/}
}
TY  - JOUR
AU  - Frankel, Michael L.
AU  - Roytburd, Victor
TI  - Compact attractors for a Stefan problem with kinetics
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a142/
LA  - en
ID  - EJDE_2002__2002__a142
ER  - 
%0 Journal Article
%A Frankel, Michael L.
%A Roytburd, Victor
%T Compact attractors for a Stefan problem with kinetics
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a142/
%G en
%F EJDE_2002__2002__a142
Frankel, Michael L.; Roytburd, Victor. Compact attractors for a Stefan problem with kinetics. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a142/