Dirichlet problem for quasi-linear elliptic equations
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the Dirichlet Problem associated to the quasilinear elliptic problem $$ -\sum_{i=1}^{n}\frac{\partial }{\partial x_i}{\cal A}_i(x,u(x), \nabla u(x))+{\cal B}(x,u(x),\nabla u(x))=0. $$ Then we define a potential theory related to this problem and we show that the sheaf of continuous solutions satisfies the Bauer axiomatic theory.
Classification : 31C15, 35B65, 35J60
Keywords: supersolution, Dirichlet problem, obstacle problem, nonlinear potential theory
@article{EJDE_2002__2002__a128,
     author = {Baalal, Azeddine and Rhouma, Nedra BelHaj},
     title = {Dirichlet problem for quasi-linear elliptic equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a128/}
}
TY  - JOUR
AU  - Baalal, Azeddine
AU  - Rhouma, Nedra BelHaj
TI  - Dirichlet problem for quasi-linear elliptic equations
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a128/
LA  - en
ID  - EJDE_2002__2002__a128
ER  - 
%0 Journal Article
%A Baalal, Azeddine
%A Rhouma, Nedra BelHaj
%T Dirichlet problem for quasi-linear elliptic equations
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a128/
%G en
%F EJDE_2002__2002__a128
Baalal, Azeddine; Rhouma, Nedra BelHaj. Dirichlet problem for quasi-linear elliptic equations. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a128/