Heteroclinic orbits, mobility parameters and stability for thin film type equations
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We study the phase space of the evolution equation $$ h_t = -(h^n h_{xxx})_x - {\cal B} (h^m h_x)_x , $$ where $h(x,t) \geq 0$. The parameters $n greater than 0, m \in \mathbb{R}$, and the Bond number ${\cal B}>0$ are given. We find numerically, for some ranges of $n$ and $m$, that perturbing the positive periodic steady state in a certain direction yields a solution that relaxes to the constant steady state. Meanwhile perturbing in the opposite direction yields a solution that appears to touch down or `rupture' in finite time, apparently approaching a compactly supported `droplet' steady state. We then investigate the structural stability of the evolution by changing the mobility coefficients, $h^n$ and $h^m$. We find evidence that the above heteroclinic orbits between steady states are perturbed but not broken, when the mobilities are suitably changed. We also investigate touch-down singularities, in which the solution changes from being everywhere positive to being zero at isolated points in space. We find that changes in the mobility exponent $n$ can affect the number of touch-down points per period, and affect whether these singularities occur in finite or infinite time.
Classification : 35K55, 37C29, 37L15, 76D08
Keywords: nonlinear PDE of parabolic type, heteroclinic orbits, stability problems, lubrication theory
@article{EJDE_2002__2002__a121,
     author = {Laugesen, Richard.S. and Pugh, Mary C.},
     title = {Heteroclinic orbits, mobility parameters and stability for thin film type equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a121/}
}
TY  - JOUR
AU  - Laugesen, Richard.S.
AU  - Pugh, Mary C.
TI  - Heteroclinic orbits, mobility parameters and stability for thin film type equations
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a121/
LA  - en
ID  - EJDE_2002__2002__a121
ER  - 
%0 Journal Article
%A Laugesen, Richard.S.
%A Pugh, Mary C.
%T Heteroclinic orbits, mobility parameters and stability for thin film type equations
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a121/
%G en
%F EJDE_2002__2002__a121
Laugesen, Richard.S.; Pugh, Mary C. Heteroclinic orbits, mobility parameters and stability for thin film type equations. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a121/