Positive periodic solutions of functional differential equations and population models
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper, we employ Krasnosel'skii's fixed point theorem for cones to study the existence of positive periodic solutions to a system of infinite delay equations, $$ x'(t) = A(t)x(t) + f(t,x_t). $$ We prove two general theorems and establish new periodicity conditions for several population growth models.
Classification : 34K13, 92B05
Keywords: functional differential equations, positive periodic solution, population models
@article{EJDE_2002__2002__a116,
     author = {Jiang, Daqing and Wei, Junjie and Zhang, Bo},
     title = {Positive periodic solutions of functional differential equations and population models},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a116/}
}
TY  - JOUR
AU  - Jiang, Daqing
AU  - Wei, Junjie
AU  - Zhang, Bo
TI  - Positive periodic solutions of functional differential equations and population models
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a116/
LA  - en
ID  - EJDE_2002__2002__a116
ER  - 
%0 Journal Article
%A Jiang, Daqing
%A Wei, Junjie
%A Zhang, Bo
%T Positive periodic solutions of functional differential equations and population models
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a116/
%G en
%F EJDE_2002__2002__a116
Jiang, Daqing; Wei, Junjie; Zhang, Bo. Positive periodic solutions of functional differential equations and population models. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a116/