An embedding norm and the Lindqvist trigonometric functions
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We shall calculate the operator norm $\|T\|_p$ of the Hardy operator $Tf = \int_0^x f $, where $1\le p\le \infty$. This operator is related to the Sobolev embedding operator from $W^{1,p}(0,1)/\mathbb{C}$ into $W^p(0,1)/\mathbb{C}$. For $1$, the extremal, whose norm gives the operator norm $\|T\|_p$, is expressed in terms of the function $\sin_p$ which is a generalization of the usual sine function and was introduced by Lindqvist [6].
Classification : 46E35, 33D05
Keywords: Sobolev embedding operator, Volterra operator
@article{EJDE_2002__2002__a108,
     author = {Bennewitz, Christer and Sait\={o}, Yoshimi},
     title = {An embedding norm and the {Lindqvist} trigonometric functions},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a108/}
}
TY  - JOUR
AU  - Bennewitz, Christer
AU  - Saitō, Yoshimi
TI  - An embedding norm and the Lindqvist trigonometric functions
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a108/
LA  - en
ID  - EJDE_2002__2002__a108
ER  - 
%0 Journal Article
%A Bennewitz, Christer
%A Saitō, Yoshimi
%T An embedding norm and the Lindqvist trigonometric functions
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a108/
%G en
%F EJDE_2002__2002__a108
Bennewitz, Christer; Saitō, Yoshimi. An embedding norm and the Lindqvist trigonometric functions. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a108/