Pullback permanence for non-autonomous partial differential equations
Electronic Journal of Differential Equations, Tome 2002 (2002).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: A system of differential equations is permanent if there exists a fixed bounded set of positive states strictly bounded away from zero to which, from a time on, any positive initial data enter and remain. However, this fact does not happen for a differential equation with general non-autonomous terms. In this work we introduce the concept of pullback permanence, defined as the existence of a time dependent set of positive states to which all solutions enter and remain for suitable initial time. We show this behaviour in the non-autonomous logistic equation $u_{t}-\Delta u=\lambda u-b(t)u^{3}$, with $t\in \mathbb{R}, \lim_{t\to \infty }b(t)=0$. Moreover, a bifurcation scenario for the asymptotic behaviour of the equation is described in a neighbourhood of the first eigenvalue of the Laplacian. We claim that pullback permanence can be a suitable tool for the study of the asymptotic dynamics for general non-autonomous partial differential equations.
Classification : 35B05, 35B22, 35B41, 37L05
Keywords: non-autonomous differential equations, pullback attractors, comparison techniques, permanence
@article{EJDE_2002__2002__a102,
     author = {Langa, Jose A. and Su\'arez, Antonio},
     title = {Pullback permanence for non-autonomous partial differential equations},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2002},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a102/}
}
TY  - JOUR
AU  - Langa, Jose A.
AU  - Suárez, Antonio
TI  - Pullback permanence for non-autonomous partial differential equations
JO  - Electronic Journal of Differential Equations
PY  - 2002
VL  - 2002
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a102/
LA  - en
ID  - EJDE_2002__2002__a102
ER  - 
%0 Journal Article
%A Langa, Jose A.
%A Suárez, Antonio
%T Pullback permanence for non-autonomous partial differential equations
%J Electronic Journal of Differential Equations
%D 2002
%V 2002
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a102/
%G en
%F EJDE_2002__2002__a102
Langa, Jose A.; Suárez, Antonio. Pullback permanence for non-autonomous partial differential equations. Electronic Journal of Differential Equations, Tome 2002 (2002). http://geodesic.mathdoc.fr/item/EJDE_2002__2002__a102/