Approximate equivalence transformations and invariant solutions of a perturbed nonlinear wave equation
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: We discuss the properties of a perturbed nonlinear wave equation whose coefficients depend on the first-order spatial derivatives. In particular, we obtain a group of transformations which are stable with respect to the given perturbation, and derive the principal Lie algebra and its approximate equivalence transformation. The extension of the principal Lie algebra by one is obtained by means of a well-known classification of low dimensional Lie algebras. We also obtain some invariant solutions and classification of the perturbed equation.
Classification : 58J90
Keywords: perturbed nonlinear wave equation, Lie algebra, approximate equivalence transformation, invariant solutions
@article{EJDE_2001__2001__a97,
     author = {Ibragimov, R.N.},
     title = {Approximate equivalence transformations and invariant solutions of a perturbed nonlinear wave equation},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a97/}
}
TY  - JOUR
AU  - Ibragimov, R.N.
TI  - Approximate equivalence transformations and invariant solutions of a perturbed nonlinear wave equation
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a97/
LA  - en
ID  - EJDE_2001__2001__a97
ER  - 
%0 Journal Article
%A Ibragimov, R.N.
%T Approximate equivalence transformations and invariant solutions of a perturbed nonlinear wave equation
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a97/
%G en
%F EJDE_2001__2001__a97
Ibragimov, R.N. Approximate equivalence transformations and invariant solutions of a perturbed nonlinear wave equation. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a97/