Cauchy problem for derivors in finite dimension
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: In this paper we study the uniqueness of solutions to ordinary differential equations which fail to satisfy both accretivity condition and the uniqueness condition of Nagumo, Osgood and Kamke. The evolution systems considered here are governed by a continuous operators $A$ defined on $\mathbb{R}^N$ such that $A$ is a derivor; i.e., $-A$ is quasi-monotone with respect to $(\mathbb{R}^{+})^N$.
Classification : 34A12, 34A40, 34A45, 34D05
Keywords: derivor, quasimonotone operator, accretive operator, Cauchy problem, uniqueness condition
@article{EJDE_2001__2001__a49,
     author = {Couchouron, Jean-Fran\c{c}ois and Dellacherie, Claude and Grandcolas, Michel},
     title = {Cauchy problem for derivors in finite dimension},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a49/}
}
TY  - JOUR
AU  - Couchouron, Jean-François
AU  - Dellacherie, Claude
AU  - Grandcolas, Michel
TI  - Cauchy problem for derivors in finite dimension
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a49/
LA  - en
ID  - EJDE_2001__2001__a49
ER  - 
%0 Journal Article
%A Couchouron, Jean-François
%A Dellacherie, Claude
%A Grandcolas, Michel
%T Cauchy problem for derivors in finite dimension
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a49/
%G en
%F EJDE_2001__2001__a49
Couchouron, Jean-François; Dellacherie, Claude; Grandcolas, Michel. Cauchy problem for derivors in finite dimension. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a49/