Stabilization of linear continuous time-varying systems with state delays in Hilbert spaces
Electronic Journal of Differential Equations, Tome 2001 (2001).

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Summary: This paper studies the stabilization of the infinite-dimensional linear time-varying system with state delays $$\dot x = A(t)x + A_1(t)x(t-h)+B(t)u\,.$$ The operator $A(t)$ is assumed to be the generator of a strong evolution operator. In contrast to the previous results, the stabilizability conditions are obtained via solving a Riccati differential equation and do not involve any stability property of the evolution operator. Our conditions are easy to construct and to verify. We provide a step-by-step procedure for finding feedback controllers and state stability conditions for some linear delay control systems with nonlinear perturbations.
Classification : 93D15, 93B05, 34K20
Keywords: stabilization, time-varying, delay system, Riccati equation
@article{EJDE_2001__2001__a33,
     author = {Vu Ngoc Phat},
     title = {Stabilization of linear continuous time-varying systems with state delays in {Hilbert} spaces},
     journal = {Electronic Journal of Differential Equations},
     publisher = {mathdoc},
     volume = {2001},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a33/}
}
TY  - JOUR
AU  - Vu Ngoc Phat
TI  - Stabilization of linear continuous time-varying systems with state delays in Hilbert spaces
JO  - Electronic Journal of Differential Equations
PY  - 2001
VL  - 2001
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a33/
LA  - en
ID  - EJDE_2001__2001__a33
ER  - 
%0 Journal Article
%A Vu Ngoc Phat
%T Stabilization of linear continuous time-varying systems with state delays in Hilbert spaces
%J Electronic Journal of Differential Equations
%D 2001
%V 2001
%I mathdoc
%U http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a33/
%G en
%F EJDE_2001__2001__a33
Vu Ngoc Phat. Stabilization of linear continuous time-varying systems with state delays in Hilbert spaces. Electronic Journal of Differential Equations, Tome 2001 (2001). http://geodesic.mathdoc.fr/item/EJDE_2001__2001__a33/